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Abstract—Heterogeneous integration packaging has become
increasingly important due to recent rapid technological advance-
ments. In these designs, substrate routing is a critical factor in
terms of time to market. While there are some existing works
and automatic routing tools available to help designers solve
routing problems, they often result in poor performance due to
the complex constraints and specifications of industrial designs.
Manual revision of these results is time-consuming and can take
weeks. In this work, we propose a deep learning approach to
improving the area distribution and reducing detours in the auto-
routing results of industrial Flip-Chip Ball Grid Array (FCBGA)
substrate designs, with the goal of reducing the time needed for
manual modification. Experimental results show that our proposed
methods can effectively refine both detours and area distribution
in auto-routing results, producing results that are similar to
manual routing. We also successfully reduce the modification time
compared to manual one.

Index Terms—package substrate routing, routing refinement,
deep neural network

I. INTRODUCTION

In recent years, technological progress has advanced rapidly,

leading to increased demand for high-bandwidth and high-

performance applications such as cloud computing and GPU

chips. This has spurred innovation in the advanced Integrated

Chip (IC) packaging domain, including the development of

heterogeneous integration packaging like Fan-Out Chip on

Substrate (FOCoS) [1] and Wafer Level Integrated Fan-Out

(WLInFO) [2] technologies, which integrate individually man-

ufactured components to form a System-in-Package (SiP).

Among various package designs, Flip-Chip packaging has

become particularly popular due to its high number of I/O

pins, good electrical performance, and ability to facilitate direct

thermal dispassion.

Substrate routing is a crucial stage in these package designs

and can be divided into two subproblems: escape routing and

area routing. During escape routing, the nets are routed from the

pins inside the chip to the chip boundary. Then, area routing

is used to connect these boundary points to the target pins.

Some recent works, such as [3], [4], and [5], have proposed

concurrent routing methodologies that address both escape and

area routing to bridge the gap between these two subproblems.

[6] proposed a ring routing framework for Flip-Chip packaging

that takes into account symmetry and shielding constraints to

enhance the package design cycle.

Fig. 1. Visualization of dense routing areas and detours in auto-routing result,
which are highlighted in red and yellow squares, respectively.

Additionally, previous works have employed Artificial In-

telligence (AI) techniques such as Deep Learning (DL) and

Reinforcement Learning (RL) to achieve better routing results.

These techniques have demonstrated significant improvements

in efficiency, accuracy, and adaptability in modern complex

chip designs, which have become increasingly important. For

instance, in [7], Monte Carlo Tree Search (MCTS) combined

with Deep Reinforcement Learning (DRL) guided rollout pol-

icy was used to address circuit routing problems.

Despite the availability of previous works and automatic

routing tools that aid designers in solving routing problems

quickly, they often result in poor performance due to the

complex constraints and specifications of real designs. To meet

design specifications, designers may need to spend several

weeks modifying the initial results, which can be a time-

consuming process. Examples of modifications that designers

may need to make are shown in Fig. 1, with dense routing areas

and detours highlighted in red and yellow squares, respectively.

Dense routing areas can result in shorts and crosstalk between

adjacent nets, leading to poor electrical performance during

substrate fabrication. Detours are only allowed for length

matching of differential pairs. Reducing the time required for

manual modification is, therefore, an important issue in the

entire design cycle.
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There are already some previous works that focus on refining

initial routing results. [8] developed a diffusion-based topolog-

ical router (D-Router) that reduces routing congestion from the

initial substrate routing by iteratively spreading out the routing

area through a simulated diffusion process. [9] proposed a novel

framework that combines supervised machine learning and the

technique of rip-up and reroute to repair defects in substrate

routing.

However, most previous works such as [1], [2], [3], [4], [5],

[6], [7], and [9] typically employ grid-based algorithms, which

may be inefficient or time-consuming for large industrial cases.

While the router proposed in [8] can produce a good area

distribution in a shorter runtime, its purpose is slightly different

from the focus of this work. Their router reroutes the initial

routing results before the diffusion process, so the initial routing

results are not directly refined. In [9], the proposed rerouting

framework can lead to a manual-like design that reduces detours

and slightly improves routing congestion, but the processes

are done locally within fixed boxes and cannot interact with

adjacent boxes to solve problems globally.

In this work, we focus on optimizing the detours and area

distribution of industrial Flip-Chip Ball Grid Array (FCBGA)

substrate routing from the perspective of refinement, with

the goal of reducing manual modification time. Instead of

constructing a new routing framework to solve the routing

problems from scratch, we propose several gridless methods

to refine auto-routing results, which can handle large industrial

cases. In our proposed methods, we also apply ResNet50V2

[10], a Deep Neural Network (DNN) model, to bring our refined

results closer to those of manual routing.

The rest of the paper is organized as follows. Section II

introduces the entire refinement flow. Section III shows the

experimental results. Finally, Section IV concludes this paper.

II. METHODOLOGIES

In this section, an overview of the overall flow will be

provided first, followed by a description of the methods used

in each stage. Fig. 2 shows the overall flow of our proposed

refinement process. Given the auto-routing information, we first

find the net order based on it. DNN guided routing method

will then be used to refine detours as a pre-processing step for

the subsequent phases. During the detour optimization stage,

refinement process will be repeated until the number of detours

converges. After refining the detours, net translation method

will be used to distribute the routing area smoothly in the area

optimization phase. The global net translation step performs

rough routing area refinement by iteratively expanding the

distance between nets to redistribute the entire routing area.

The remaining dense areas will then be detected and further

refined in the sparser direction. Finally, meaningless bends will

be removed for better results.

A. Find Net Order

The net order, which is used to make our subsequent re-

finements smoother, will be found first. Since we are focusing

on refining the auto-routing result, the net order does not need

to be calculated in as complex a manner as in previous works

Fig. 2. Overall flow of proposed refinement.

and can be found directly from the initial routing results. Based

on the characteristic of FCBGA routing, where the start points

are inside and the end points are outside in each net, we use

a movable frame to determine the net order. If we consider

N i
K(x, y), where K is the set of nets and i is the turning points

and edge points of each net, the middle points can be calculated

as follows:

(
min(N i

Kx) +max(N i
Kx)

2
,
min(N i

Ky) +max(N i
Ky)

2
),

(1)

which denoted as Nm
K (x, y). Then, the initial frame can be

constructed using these midpoints, and the right bound of the

frame can be calculated as follows:

∀ k ∈ K ∧Nm
k x > 0 ⇒ 1

|k|
p∈k∑

p

Nm
p x, (2)

and the other bounds can also be calculated by modifying (2).

After constructing the initial frame, we check if it intersects

all nets. If there are some nets do not intersect, the frame

will shrink until it intersects all the nets. Once the frame is

set, the net order can be obtained in either a clockwise or

counterclockwise order by sorting the intersections.

B. Detour Detection

Detours in routing often occur during sharp turns or adjacent

to other detoured segments. Due to the 135-degree routing

restriction, these detours must contain more than three con-

secutive segments with at least two turns in the same direction.

Detours can be easily detected by checking the vector and

length of each segment as there must be short segments in

every three consecutive detoured segments, and the vectors of

the first and third segments must be perpendicular. We will

first highlight every three detoured segments, then merge all

consecutive detoured segments.

C. DNN Guided Routing Method

To adapt to large-scale cases and leverage the characteristics

of 135-degree routing, we propose a parallelogram gridless

routing method. Fig. 3a shows the overall flow of our DNN

guided routing method. In this method, we use DNN to ob-

tain manual-like results and the divide-and-conquer technique

to reduce computational complexity. For each consecutive

detoured segments, the model predicts its routing direction,

taking as input the start point (blue dot), end point (yellow
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Fig. 3. (a) The overall flow of DNN guided routing method. (b) Two directions from the start point (blue dot) to the end point (yellow dot), clockwise (green
lines) and counterclockwise (red lines). (c) Visualization of setting the auxiliary point (red dot) which is generated near the bottom of the first intersecting
segment (green segment) and perpendicular to the next segment along the crossed one (yellow line), and within the same region as the start point (blue dot).

dot), and nearby nets (black lines). As shown in Fig. 3b,

the routing direction can be only clockwise (green lines) or

counterclockwise (red lines). After prediction, intersections

with other nets in the predicted direction will be detected, and

if there are none, we route directly from the start to the end

point (orange container). Otherwise, an auxiliary point will be

generated (purple container), dividing the routing problem into

two subproblems, from the start point to the auxiliary point

and from the auxiliary point to the end point. Fig. 3c illustrates

the process of setting the auxiliary point (red dot), which will

be set near the bottom of the first intersecting segment (green

line) and perpendicular to the next segment of the intersected

one (yellow line). It is always set in the region where the start

point (blue dot) is located, as its purpose is to help routing flow

smoothly and avoid net crossings. The process continues until

the entire problem or subproblems are completed in a direct

connection. Finally, the entire rerouted consecutive segments

will be merged to complete the detour optimization stage.

In this work, we use ResNet50V2 as our DNN model. We

extract images from manual routes so that the model can learn

the direction that designers prefer. Each image contains the start

and end points of every two consecutive segments and their

adjacent nets, and one of the routing directions is the label.

Clockwise or counterclockwise labels from the start point to

the end point will be determined based on the manual routing

results. Data with more than 10,000 images will be split into

80% for training, 10% for validation, and the rest for testing.

With a model accuracy of up to 90%, our routing method takes

into account manual routing information to a great extent.

D. Net Translation Method

The net translation will be performed for each net in the se-

lected group, sequentially on every three consecutive segments

starting from the first segment to the last segment. By analyzing

the possible situations that net translation might encounter, we

Fig. 4. Two patterns of nets with left and right turns from the red line with
vertical routing direction are highlighted in green and blue, respectively. The
right half shows some net translation examples.

found that only two patterns of three consecutive segments

need to be considered, which we named the trapezoid and

parallelogram based on their translation shapes, as shown in

the left half of Fig. 4. We first determine which pattern will

be used in the current phase and whether we can directly

construct the desired shape. If it is possible, the desired shape

will be constructed directly and the proposed net translation

method will be performed. The upper part of each shape

in Fig. 4 shows an example of their direct construction and

net translation, with red lines and orange arrows indicating

new segments and translation directions, respectively. If direct

construction is not possible, a break point (red dot) will be

set according to the nearby segments and split one of the

three consecutive segments to smooth the translation process.

In the case of the parallelogram pattern, the break point will be

moved by a certain value to avoid net overlap when forming the

shape. During each translation, the specification violation will

be checked and if it violates, the movement will be canceled.
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TABLE I
ROUTING RESULT COMPARISON

Benchmark Wirelength (μm) # Segments # Dense Areas
# Nets Chip size Substrate size Auto-route Ours Auto-route Ours Auto-route Ours

Case1 308 11165 ∗ 3462 29600 ∗ 29600 3599015 3576650 1993 1028 1459 559
Case2 233 12709 ∗ 11167 50268 ∗ 53002 2450300 2417559 1443 450 923 631
Case3 296 22318 ∗ 27116 65180 ∗ 65380 6140656 6034468 3646 1414 2873 2208
Case4 195 9833 ∗ 8478 24610 ∗ 24610 1962700 1930996 1819 835 964 543

Comparisons 1.00 0.99 1.00 0.42 1.00 0.60

E. Dense/Sparse Area Detection

After the global net translation phase, we detect the remain-

ing dense areas and their nearby largest sparse areas. To detect

dense areas, the original design will be divided into several

routing blocks first. We then check if the value of each block

exceeds a defined threshold to detect whether the partial area is

dense or not. Sparse areas are then detected in two directions

perpendicular to the routing direction of each continuous dense

area. The censored line expands until it hits other dense areas

or design edges. After detecting the sparse areas in these two

directions, the refinable area will be calculated and the larger

one will be chosen as the detection result for this continuous

dense area.

F. Redundant Bends Reduction

In the refinement process, we use break points to smooth the

translation of dense areas. However, these break points may

result in redundant bends in the routing details. To eliminate

these meaningless bends, in the final stage of our proposed

refinement flow, we apply the parallelogram approach of the

net translation method to convert them into straight lines.

III. EXPERIMENTAL RESULTS

The proposed refinements are applied to four industrial

cases provided by Advanced Semiconductor Engineering (ASE)

Group for evaluation. TABLE I shows the information for these

four cases and compares the results of our refinements with

the auto-routing results. The wirelength is not increased during

our refinement, and the number of segments and dense areas

can be used to evaluate the effectiveness of our refinements in

reducing detours and improving area distribution, respectively.

Fewer segments suggest fewer detours and redundant bends,

while fewer dense areas indicate a more evenly distributed

routing area. Our proposed methods can improve detours and

area distribution by an average of 58% and 40%, respectively.

Partially refined results for Case 1, including heatmaps for

comparing routing area densities, are shown in Fig. 5. The pro-

posed refinements have significantly reduced the time required

to complete the routing process, which used to take weeks to

complete manually but can now be done in seconds.

IV. CONCLUSIONS

In this paper, we proposed a deep learning approach to refine

substrate routing, aiming to improve upon existing auto-routing

results rather than constructing an entire routing framework

from the ground up. Our methods, which are designed to handle

(a) (b)

(c) (d)

Fig. 5. Comparison between the partial results of auto-routing (a) and after
our refinement (b) of Case1. Heatmaps, (c) and (d), are provided to compare
the routing area density more easily.

large-scale industrial cases, are all gridless, making them faster

and more flexible than grid-based algorithms. In addition to

improving effectiveness, we also took into account industrial

requirements by using DNN to anticipate the routing features

preferred by designers. The experimental results showed that

our methods were able to effectively refine detours and area

distribution without increasing the wirelength. We were also

successful in reducing the time needed for modification com-

pared to the manual one.
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